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9] G A comprehensive theoretical investigation of multiple slip in axially tensile-loaded f.c.c.
T O crystals in #-fold symmetry positions (n=4, 6, 8) is presented. The analysis is complete to
— o second order in terms of series expansions of all variables in the prescribed small load

increment. In the first part of the paper, general kinematic relations and slip-system
inequalities are given, and several new results discovered that apply independently of
hardening rule and degree of symmetry. Subsequent sections contain extensive first-
and second-order analyses corresponding to four specific hardening theories, including
Taylor’s classical isotropic rule and the ‘simple theory’ of anisotropic latent hardening.
For minimum work, unifying relations are found connecting a generic hardening par-
ameter, its rate of change with load, and the first and second derivatives of axial stretch
that hold for all four theories.
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470 K.S. HAVNER

1. INTRODUCTION AND SCOPE OF STUDY

The initial (rigorous) analysis of the ‘rate problem’ for response of axially-loaded crystals in
multiple-slip positions is found in Havner (1981). That work contains an exhaustive investigation
of finite plastic straining of f.c.c. crystals (in tension) in sixfold axial symmetry according to both
Taylor’s classical isotropic hardening rule (Taylor & Elam 1923, 1925) and the ‘simple theory’
of finite distortional latent hardening introduced in Havner & Shalaby (1977). The latter
hardening rule was the first (continuum) mechanics-based theory to account for the phenomenon
of “overshooting”’ in f.c.c. and b.c.c. crystals initially oriented for single slip, as established in the
comprehensive series of papers: Havner & Shalaby (1977, 1978); Havner et al. (1979); Havner &
Baker (1979); and Vause & Havner (1979) (also see the review article by Havner (19824) for
background to this theory).

The multiple-slip analysis in Havner (1981) was extended in Havner (19824) to encompass
compressive loading in sixfold symmetry and a two-parameter, empirical hardening rule from
the metallurgical literature; and the rate problem in all double-symmetry positions was analysed
for the three hardening rules. Subsequently, complete solutions for all cases of finite double slip
according to the simple theory were obtained by Havner & Salpekar (1982, 1983); and Salpekar
(1982) extended the tensile rate analysis in Havner (1981) to f.c.c. crystals in four and eightfold
symmetry positions.

In the present work I have undertaken a substantial generalization and extension of the
higher-symmetry analyses in Havner (1981, 198254) and Salpekar (1982). My treatment here of
tensile-loaded f.c.c. crystals, in four, six and eightfold symmetry, is in terms of series expansions of
all variables, to second order, in the small yet finite load increment, taken as prescribed. Corre-
spondingly, the first-order analysis both encompasses and extends all previous analyses of the rate
problem in n-fold symmetry (n = 4, 6, 8), while the second-order analysis goes beyond the rate
problem and so is totally new.

The balance of the paper is divided into three major sections, each containing three or more
subsections. In § 2 is included a comprehensive presentation of the fundamental kinematics and
critical slip-system inequalities, both first- and second-order, that must be applied in any analysis
of axially-loaded crystals in z-fold symmetry, whatever hardening theory one may choose to adopt
(or seek to discover from experiment). The possibilities for coincident rotation among material-,
lattice-,and axis-co-rotational framesare carefully delineated and their consequencessubsequently
explored. Moreover, several simple relations are found that are independent of hardening rule
and degree of symmetry (four, six or eightfold) and that later prove particularly useful in analysis
of specific theories.

In §§ 3 and 4, four hardening theories are considered that are of value in the context of finite
deformation of crystals. These are the previously mentioned Taylor hardening rule, ‘simple
theory’, and two-parameter rule together with a recently proposed hardening theory introduced
in Peirce et al. (1982). Particular emphasisis placed in these sections on a minimum work postulate
for prescribed axial-load increment that corresponds to ‘stiffest response’ in n-fold symmetry
and is the natural generalization of a postulate of minimum rate of plastic work introduced in
Havner (1981).

From minimum work, a single unifying relation is established in § 3, connecting a generic
hardening parameter 4, and the rate of change of axial stretch with load, that applies to all four
hardening theories and the three higher symmetry positions (z = 4, 6, 8). In addition, a complete


http://rsta.royalsocietypublishing.org/

' . \

THE ROYAL A
SOCIETY )

PHILOSOPHICAL
TRANSACTIONS
OF

a
A Y

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

ANALYSIS OF CRYSTALS IN #»-FOLD SYMMETRY 471

first-order analysis of the hardening rule of Peirce et al. (1982) in sixfold symmetry is done
(parallel to the rate analyses of the other three hardening theories in Havner (1981, 19825)
which are reviewed here). It is found that, for minimum work, this newest theory predicts axis
stability, axisymmetric deformation, and isotropic hardening of both active and latent systems.
The theory is alone among the four in these combined predictions.

In § 4, a second unifying relation is found connecting #,, its rate of change with load, and the
first and second derivatives of axial stretch that applies whenever the loading axis is stable in
n-fold symmetry. Moreover, it is shown that in sixfold symmetry this relation is a direct
consequence of minimum work for each of the four hardening theories. Thus, for *stiffest response’
of an f.c.c. crystal in sixfold symmetry (where such response is the norm), experimental infor-
mation about the first and second derivatives of axial stretch is sufficient to determine the
hardening modulus %, and its rate of change with load (at the onset of finite crystallographic slip)
for all four hardening rules.

2. GENERAL ANALYSIS IN 7-FOLD SYMMETRY
2.1. Definitions and fundamental kinematic relations

Let ¢ denote a unit vector in the direction of prescribed tensile load per unit reference area
(nominal stress) s, and A denote the stretch of the gross crystalline material in that direction
(with Az an embedded vector). Then, Cauchy stress ¢ has the representation

c=A1®1, (2.1)
and the resolved shear stress on the kth crystallographic slip system is

tr (Neo) = mypds, N = {(b ® 1) }sym, ' (2.2)
with
my, = (by1) (ng1) = 1Ny, (23)

where b, n, denote unit vectors in the slip and normal directions respectively of the kth slip
system. Henceforth m;, will be called the ‘Schmid factor’ for that system. (Note: ab and aAb are
scalar products for vectors @, b and second-rank tensor 4.)

Let (2.), 2/21(...), and (...)" designate material derivatives of vector and tensor variables
relative to observer frames, respectively rotating with the underlying atomic lattice, the gross
crystalline material, or the loading axis. Also, let (...)" designate the frame-independent material
derivative of a scalar invariant. Then, disregarding effects of infinitesimal lattice straining
(typically of order 10-3 or less compared with unity) on slip-system directions b,, n,, one has the
following alternative ways of expressing the material derivative of the invariant resolved shear
stress on that system:

(my As)" = (As) my, + 2(As) eN, d, (2.4)
(myAs)" = (As) my, + 2(As) IN, D1/ Dt + (As) 1(D N,/ D) 1, (2.5)
(myAs)" = (As) my,+ (As) t(N,) "¢ (2.6)

These expansions follow from (2.3) and the fact that N, is constant only in a lattice-co-rotational
frame while z is constant only in an axis-co-rotational frame.
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Let 2 and W designate material spin relative to lattice and axis-co-rotational frames respect-
ively, and w designate lattice spin relative to the latter frame. Then, choosing all frames
momentarily to coincide, we have

W—w=20= %Qk'y}c’ Q= [(b ® n)ilskews (2.7)

a fundamental kinematic connection, with y,, > 0 the crystallographic slip rate in the £th system.
As — W, —w are the spins of the loading-axis frame relative to the material and lattice-co-
rotational frames, and as (z)" = 0, there follow

D) Dt = -~ Wi = Di—(AJA) 1 = X 7,(N,—my D, (2.8)
k
i=—-w=(D+2)1—(A/A)1=Xy,[(b®n),—mI], (2.9)
%
where the terms on the extreme right in (2.8), (2.9) reflect a disregard of the contribution of

infinitesimal lattice straining (at constant pressure) to the rate of deformation (Eulerian strain
rate) D, whence

D= %‘,Nkj/k, (A/A) = 1D1 = X Y (2.10)

Further, the rates of change of &), in material and axis-co-rotational frames are given by
DN,/ Dt = N,Q—QN, = N@;ij,-%;yj!)ij, (2.11)
(N,) = =N, 0+oN,. (2.12)

Henceforth we shall refer to the axis-co-rotational frame simply as the loading frame.

Consider a situation in which at least two of the defined reference frames remain coincident
during multiple slip. From (2.7) there obviously are four possibilities: (i) @ = 0, the lattice-
co-rotational and loading frames rotate together while the material-co-rotational frame rotates
separately; (ii) W = 0, the material-co-rotational and loading frames rotate together while the
lattice-co-rotational frame rotates separately; (iii) 2 = 0, the lattice and material-co-rotational
frames rotate together while the loading frame rotates separately; (iv) @ = W = £ = 0, all three
frames rotate together (i.e. there is no rotation of either material or lattice relative to the loading
frame). For the analysis of pure axial loading, we shall find it useful to modify these four cases by
specifying only that: (i) i = —wi = 0; (ii) Zt/Dt = — Wi = 0; (iii) § = Z1/Dt, whence 1 = 0;
(iv) i = Q1/2t = 0, whence wt = Wi = 1 = 0. The corresponding equations in terms of slip

rates are:
(iy i=0, %7k[(b ®n),—ml]i=0; (2.13)
(i) 20/t =0, SN, —mI]s=0; (2.14)
(iii) = 21/ 91t, %7’/,09,61 =0; (2.15)
(iv) &= 21/Pt = 0; both (2.14) and (2.15) (whence (2.13)) are satisfied. (2.16)

The physical interpretation of (2.13)—(2.15) is of course that the respective axial vectors of
spins w, W or Q are collinear with 1. In general, for one of these cases to occur, at least three slip
systems must be active simultaneously. We shall consider this further in a later section.
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Finally, we note the necessary and sufficient condition that the material and axis-co-rotational
derivatives of &, coincide. From (2.7), (2.11) and (2.12) this is

N,W—WN, = 0. (2.17)

It is readily established that the combined conditions (2.14) and (2.17), corresponding to
/Dt = (1)" = 0 and DN, /Dt = (N,)’, are satisfied only in the event that W = 0.

2.2. First- and second-order inequalities in critical systems

We denote the critical strength (‘flow stress’) in the kth crystallographic slip system by 7, and
consider its rate of change to be a linear function of the slip rates in all active systems (see Hill
1966; Hill & Havner 1982, §7):

T = X Hyy;. (2.18)
J

The H;; will be called the physical slip-system hardening moduli. They may be both functions
of the current stress state (for example dependent on the orientation of the tensile or compressive
force relative to the lattice in axial loading) as well as functions of the slip-history; but they are
assumed to be independent of which systems are momentarily active.t The critical strengths 7,
are considered to depend only on the slip history. Thus, the general hardening law (2.18) is
consistent with the following scenario.

A crystal is unloaded from a plastically deformed state without further slipping. Then,
a differently oriented specimen taken from the deformed ‘parent’ crystal is reloaded until
measurable slip is initiated in one or more systems distinct from those (or that one) originally
active. The unknown critical strengths developed in these previously latent systems, as a consequence of the
original deformation of the parent crystal, are taken to equal the respective resolved shear stresses on the systems
at the onset of slip in the reloaded specimen. (This is in fact the standard experimental procedure for
determination of latent hardening in cubic crystals. See, for example, Jackson & Basinski 1967;
Franciosi et al. (1980).)

In accordance with the above, a slip system in a crystal under load is defined as critical at a
material point ifits resolved shear stress (dependent only on current stress state) equals its critical
strength (dependent only on slip history). In a critical system the rate of change of resolved shear
stress, in quasi-static loading, may not exceed the rate of change of critical strength. An active
system is of course one in which y, > 0, and only a critical system can be active. Necessary (but
not sufficient) conditions for a slip system to be active are therefore

tr (de) = T]g, tr (Nko'). = ’i-k‘ (2.19)

A system satisfying these necessary conditions (hence remaining critical) but in which y, = 0
will be labelled inactive-critical. A critical system that does not satisfy the second necessary condition
(i.e. in which tr (Ny6)" < 7,) will be labelled inactivated.

1 In Franciosi ef al. (1980), equations encompassed by (2.18) are given in the form 7, = 7o+ Z; H};v;, requiring
all physical hardening moduli to be constant. Then, experimental evidence of rapidly increasing (followed by
decreasing) plastic anisotropy in single slip is offered as conclusive argument that the y; are not a sufficient set of
kinematic variables for characterization of gross crystal hardening. Rather, various dislocation measures are
introduced in order to express ‘adequate’ hardening laws. The problem, however, lies not with the adequacy of
macroscopic slip rates as the independent kinematic variables but with the assumption that the H,; are constant.
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474 K.S. HAVNER

Henceforth we shall be concerned only with the analysis of initially critical systems at s = s,
for small but finite changes 8s in the nominal stress. Define

Jo = Te—mAs = 0, (2.20)

as the (non-negative) difference between critical strength and resolved shear stress in the kth slip
system. Then, indicating differentiation with respect to s by (...)’, we must have in each of the z
initially critical systems

(fo=0, (fio=0, frvi=0, v;>0, (2.21)
and

8o+ 88
f Srds =0, k=1,...,n, (2.22)
So
with the equality in (2.22) of course satisfied for an active system.

Consider a unidirectional (i.e. s > s5,) Taylor series expansion of f}, in an initially critical
system, about the reference stress so: /7, = (f1)o+ (f%)o (s —5o) + ... On substituting into (2.22)
and integrating we find

(f1)o8s+3(f1)ed2 20, k=1,...,n, (2.23)

correct to second order in s. For systems respectively active, inactive-critical, or inactivated
during the small nominal stress change 8s, there follow (from (2.21) and (2.23))

active: (fr)o =0, (fx)o = 0; (2.24)
nactive-critical: (f1)o =0, (fx)o = 0; (2.25)
inactivated: (f}), > 0, sign of (f%), undetermined. (2.26)

Thus, in all critical systems
(Th—mAs)g = (mi(A5)")os (2.27)

and in each active or inactive-critical system
(i —miAs = 2m(As5))g = (my(A5)")o- (2.28)

Inequalities (2.27) and (2.28), henceforth called the first- and second-order inequalities in critical
systems, will be the focus of our analysis herein. (Itisimportant to emphasize that (2.28) necessarily
holds in an initially critical system only if the equality holds in (2.27), that is only if the system
remains critical during a small increment in load.)

From (2.3), (2.9) and (2.10) we have

my, = 2N, i = Ty v;—2my(A'/A), (2.29)
j
with
n; =N, (b®n);1, A/A= %mﬂ/}. (2.30)

Therefore the first-order inequalities (2.27) can be expressed in the form

(Th)o = (/\5)04? (M ¥ido+ (mp)o(A=A's)g, k=1,..,m, (2.31)

which is of course completely general.
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2.3. F.c.c. crystals in four, six, or eightfold symmetry

Consider a virgin or equally-hardened f.c.c. crystal with all 7, = 7, (momentarily) and the
tensile loading axis in a four, six or eightfold symmetry position at s = s,. In each of the 7 critical
systems (my)o = m, a constant dependent only on the axis position (m = 1/,/6, 2/3,/6, or 1/,/6 in
four, six or eightfold symmetry respectively). Moreover, in each of these multiple-slip positions
the elements of any row of the corresponding matrix (n,;) in (2.31) are permutations of the
elements of any other row, as may be seen in the Appendix. Consequently,

Z(mglo=M, j=1,...,m (2.32)

with M also dependent only on the degree of symmetry. Specifically, M = %, §, or § in four, six
or eightfold symmetry, and we observe that

M = 2mm?, n=4,6,8. (2.33) 1

Now let us sum the first-order inequalities (2.31) over the z critical systems in four, six or eight-
fold symmetry. On substituting the second equation in (2.30), (2.32) and (2.33), we discover
the remarkably simple result

% (T1)o = nm(As)g, n=4,6,8, (2.34)

which must hold for all f.c.c. crystals momentarily in a higher symmetry position, however they
subsequently rotate and deform. That is, (2.34) presupposes neither a particular hardening law
nor axis stability in the corresponding n-fold position. Comparing (2.27) with (2.34), we see that
the essential content of the latter is

Y (my)e = 0, in four, six or eightfold symmetry, (2.35)
P

(with summation on all critical systems) which of course can be determined directly from (2.29),
(2.30), (2.32), (2.83). Thus, independent of how the Schmid factors my, may change individually, whenever
the loading axis rotates away from an n-fold symmetry position, the sum of their rates of change over all
initially critical systems must be zero. (This is a general result, previously unremarked, that I have
not seen elsewhere in the literature.)

In terms of the slip-rates y; and physical hardening moduli H,;, (2.34) may be equivalently

expressed
% 2 (ij 7;')0 —nmz(/\,y)o 2 (7;’)0 2 ﬂon, n = 4: 6: 8’ (2'36)
7 J

with each summation taken over the n critical systems. Consider the set of ‘effective’ hardening
moduli %, related to the H,; through (see, for example, Havner & Shalaby 1977, equation (22),
or Hill & Havner 1982, equation (7.14))

ij = }ij— tr (Nkaj), aj = 2{0Qj}sym° (2.37)
For axial loading, from (2.1),

with
fk]- = —2,Nk!2j" (2.39)
t In every double-symmetry orientation, namely along the three sides of standard stereographic triangle a2 of

figure 1, the 2 x 2 matrix (n;;) is symmetric with equal diagonal terms (see Havner 19825, §4). Thus, X;(n;), is
again a constant dependent only on orientation. However, (2.33) is not satisfied for n = 2.
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In each of four, six or eightfold symmetry the kth row elements of the corresponding matrix ()
are not only permutations of the elements of any other row, as in the case of matrix (n;;), but also
their sum is zero (see Appendix):

S(ngdo=0, j=1,...,m. (2.40)

Thus, the sums over critical systems of the effective and physical hardening moduli for each of the
higher symmetry positions are equal:

zkl (Hyz)o = % (hrj)os n=4,6,8. (2.41)

Consequently, 33, (H,;), in (2.36) may be replaced by X, (/;), at will.

Lastly, we define
with
mkj = nkj+rkj = 21Nk1\§l, (2.4:3)

and express the first-order inequalities (2.31) in the alternative form

2 (ar;77)0 2 (Mi)g (A=A'5)g, k=1,...,m, (2.44)
j

with of course (m), = m. Observe that (m;) is a symmetric matrix whereas (n;;) is not. Thus, if
matrix (a;) is symmetric so will be the moduli 4, while moduli H,; will be unsymmetric.
Conversely, both (;;) and k;; are unsymmetric if the H,; are symmetric.

3. FIRST-ORDER ANALYSES OF SPECIFIC HARDENING RULES
3.1. Hardening theories to be considered

In Havner & Salpekar (1983, § 2) four hardening rules are identified that are ‘of demonstrated
usefulness relevant to finite distortion of cubic crystals’. They are: (i) Taylor’s classic theory of
isotropic hardening (Taylor & Elam 1923, 1925); (ii) an empirically-based, two-parameter
modification of Taylor’s rule (see Nakada & Keh 1966; Jackson & Basinski 1967); (ii) the ‘simple
theory’ of rotation-dependentt crystal anisotropy introduced by Havner & Shalaby (1977); and
(iv) a modification and extension of the ‘simple theory’ proposed by Peirce et al. (1982), here
called the ‘P.A.N. rule’. The four theories, encompassed by the general hardening law (2.18),
may be expressed as follows:

(i) Taylor’s rule: 7, = HYy; forallk, H > 0; (3.1)
i
(ii) two-parameter rule: 7, = H, X v+ Hy 3 Vs }
! m (3.2)
n=mn, n,#n, H,>H >O0;
(iii) simple theory: 7 = A X 7, —2tr (N, 69)
! (3.3)
=X (h—tr Nyay) v, h > 05
i
(iv) P.AN.rule: 7, = X y; —tr (N,62) —tr (2,0D)
i
(3.4)

=X (A-3tr Nya, +Ftra, N;)y;, £i> 0.
j

1 Here is meant relative rotation of material and lattice corresponding to the relative spin Q.


http://rsta.royalsocietypublishing.org/

JA

/ y

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

"
I— %

>~
O H
<=
= O
= O
= uw

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

ANALYSIS OF CRYSTALS IN »-FOLD SYMMETRY 477

(Peirce et al. (1982) also give a two-parameter modification of (3.4) in which # is replaced by
gh+ (1 —q) Ady;, with ¢ an independent parameter and d;; the Kronecker delta. We shall con-
sider only ¢ = 1, i.e. (3.4) here.)

It is instructive to give the ‘effective’ hardening moduli /;; for each of the last two theories.
From (2.37) with (3.3) and (3.4) one finds:

simple theory: #;; = & for all £,j; (3.5)
P.A.N. rule: &; = A+ % tr (Nyo; + Nyay). (3.6)

The symmetry of the #,; is evident in each of these theories, as is the motivation for the name
‘simple theory’ from (3.5). In contrast, the physical hardening moduli H,,; are symmetric in each
of the other two theories (as the H;; also are symmetric in the ‘kinematic’ hardening rules of
Budiansky & Wu (1962) and Weng (1979)), whence the corresponding #,; are unsymmetric.
Symmetry of moduli %, rather than H,;, was explicitly proposed in the context of crystal
mechanics by Havner & Shalaby (1977, §§3 and 4).

For axial loading, note from (2.38) that (3.6) can be expressed:

P.AN. rule: y; = A+ 3As(ry; +750). (3.7)

We shall find this form convenient here.

[100]
Ficure 1. Standard [001] stereographic projection showing f.c.c. crystal slip systems.

3.2. Furst-order analysis and a minimum work postulate
In each of four, six and eightfold symmetry, using (2.40), (2.41), figure 1, table 1, and (3.1),
(3.2), (3.5), or (3.7) as appropriate, we find:

(1) Taylor hardening: ¥ H,; = nH; (3.8)
k
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(ii) two-parameter rule: %ij = 2H, + (n—2) H, = nH; (3.9)t
(iii) simple theory: % H,; = nh; (3.10)
(iv) P.A.N. rule: 3 Hyy = nf; (3.11)

each independent of j. For convenience in subsequent equations, let /, be a generic label for the
various moduli H (Taylor modulus), /7 (defined by (3.9)), 4, and / evaluated at s, in a particular
symmetry position. Then, as

m 3 (7)o = (X'/A)o, (3.12)

from the second equation of (2.10), there follows from the above
3 X (Hyyvi)o = (n/m) ho(A'[X)o, 1 =4,6,8. (3.13)
7

Whence, from (2.36), we have the following simple lower bound to the rate of change of axial
stretch with respect to applied nominal stress, applicable to all four hardening rules in each of the
three higher symmetry positions:

Ay = (mAg)?/[hy—m*(As)o], o > m2(As),. (3.14)

Alternatively, if A\j = (dA/ds), is available from experimental test, (3.14) gives a lower bound to
the generic modulus #,:
hy = m2(As)g+ (mAy)2/Ag. (3.15)

TABLE 1. DESIGNATION OF SLIP SYSTEMS IN F.C.C. CRYSTALS
plane (111) (T11) (T11) (111)

direction  [0T1] [101] [T10]  [011] [Iof] [tT0]  [0T1] [ToT] [110]  [o11] [tof] [TT0]
system al a2 a3 bl b2 b3 cl c2 c3 d1 d2 d3

For axially-loaded crystals in multiple-slip positions, different modes of finite-deformation
response not only are kinematically possible, they indeed have been observed experimentally.
(Note, however, that the precise specification of an n-fold symmetry position apparently is
accurate only to within one or two degrees of orientation in an actual test.) These various responses
correspond to different load—displacement (s—A) curves, and the accepted experimental position
seems to be that the highest number of active systems in a particular n-fold position, or at least
the highest symmetry of deformation there, corresponds to the highest s—A curve: that is, to the
‘stiffest’ response.

It is evident from figure 2 that the stiffest response is defined by the minimum increment in
work 8w, per unit reference volume, for a small increment 8s in nominal stress (as this work is
merely the area under the s—A curve of a particular deformation response). From a Taylor series
expansion it is readily found that

0+ 0
sw = f "X = (sX) s+ H(X + 7)o Bt ... (3.16)
So

1 This follows from the fact that, for each critical slip system £ in four, six or eightfold symmetry, one and
only one other critical system / has a slip plane in common (n; = n;). Refer to figure 1 and table 1.
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Consequently, to minimize dw correct to second order in s and achieve the stiffest response from
state (5, A),,
minimize A; and Ajg. (3.17)

This statement is of course independent of hardening rule, but upon comparing (3.17) with (3.14)
we see that each of the considered theories provides the minimum Ag, hence the stiffest response,
if no critical system is inactivated (that is if every system is either active or inactive-critical as
defined by (2.25)). Subsequently we shall find that this result is consistent with the (apparent)
experimental position of highest symmetry deformation for each of the four hardening rules
considered here.

4 AA‘S)

minimum Ay = (dA/ds),
Agls)

sg+ds _—~ Acls), greatest A

So

Ao )

F1GURE 2. Possible deformation responses to nominal stress increment 8s in an n-fold symmetry position: A,(s),
anticipated greatest number of active systems; Aq(s), anticipated least number of active systems (single or
double slip).

A postulate of minimum rate of plastic work was introduced in Havner (1981) as a basis for the
selection of axis stability and axisymmetric deformation from among the various solutions per-
mitted by the rate-type constitutive inequalities, of either Taylor hardening or the simple theory,
in sixfold symmetry. This connection was extended to the two-parameter rule in Havner (19825,
theorem 6.1), where is also included the analysis of rate-type inequalities in all double-symmetry
positions for all three hardening theories. Rate-type inequalities and the minimization of plastic
work rate for a given nominal stress rate (hence the highest (ds/dA),) are, of course, fully
equivalent to the first-order inequalities and first term in the series expansion of incremental work
here. Hence, we shall call on these previous results for the first-order analyses of the above three
hardening rules and extend the detailed analysis to the P.A.N. rule only in sixfold symmetry.
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3.3. First-order solutions in sixfold symmetry
3.3.1. Taylor hardening and the two-parameter rule

For tensile loading in sixfold symmetry (namely [111] in figure 1), Taylor hardening and the
two-parameter rule may be treated together. (A separate analysis for Taylor hardening was first
given in Havner (1981).) The corresponding first-order inequalities (Havner 19824, equations
(6.1)) follow by substituting (3.2) (with 7, ¥, replaced by 7, v;), (A 2), and (m;), = m = 2/3./6
into (2.31) for each of the six critical systems. For minimum work, hence the stiffest response, all
equalities are satisfied (from (3.14) and (8.17)), and the system of six equations can be reduced to
the following set of five (Havner 19825, equations (6.5)):

(Yi+7e)o = (va+va)o = (vs+7s5)0 = mA/[3hy—3(As),], (3.18)
(a—1) (vi—7s)o+a(ys—va)o+ (¥s— 7)o = 0, (3.19)
a(y1+vs—7s—7e)o = 0, (3.20)
in which
a=§(Hy—H,)/(As)os hy =3§H,+5H,, (3.21)

with the critical systems at 7, = [111] (see figure 1) numbered 1-6 in the order a2, a3, b1, b3,
d1, d2. For H, # H,, (3.18)-(3.20) are independent and one obtains (Havner 19825, equations
(6.6))

(7)o = (va)o = (v5)0 and  (v3)o = (¥3)o = (¥e)os Vi 2 O. (3.22)

Equations (3.18), which hold for H, = H, = H as well (that is for Taylor hardening), are
precisely the conditions (2.13) for zero tensile-axis rotation relative to the lattice, namely i = 0,
as shown in Havner (1981, equations (3.21)). The solution (3.22), which necessarily holds only for
H, # H,, corresponds to axisymmetric deformation relative to the sixfold axis (Havner 1981,
§ 3.4). Taylor hardening, then, requires axis stability for minimum Aj but permits other defor-
mation modes than axisymmetric, as first shown in Havner (1981). These results are summarized
in the following two theorems:

TueoreMm 3.1 (Havner 1981). The tensile loading axis is stable in the sixfold symmetry position,
corresponding to Taylor hardening, if and only if the rate of plastic work is a minimum.

THEOREM 6.1 (Havner 19825). The tensile loading axis is stable and the deformation is axisymmetric
in the sixfold symmetry position, corresponding to the two-parameter rule Hy, > H,, if and only if the rate of
plastic work is a minimum.

(It may be noted in passing that theorem 6.1 also would hold for H, < H,, or relative latent
softening. Such a hardening rule has no basis in experiment however.)

3.3.2. Sumple theory of rotation dependent anisotropy

For the simple theory, the required first-order inequalities in sixfold symmetry are identically
equations (3.22) of Havner {1981); and the matrix from the left side of system (8.22) in that
reference is the same as (my;), = (7)o + (745)0 from (A 2) and (A 5) here. Specifically, on sub-
stituting (3.5) and (3.12) into (2.42) and (2.44), one obtains

(ho/m) (X'[A)o > (/Wo% (m; vi)o+m(A=A's)e, k=1,...,m, (3.23)
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with matrix (m;;), singular of rank 3 for » = 6 as established in Havner (1981, § 3.3). As before, all
equalities must hold for minimum work, hence at least three systems must be active. The corre-
sponding general solution is given by equations (3.26) in Havner (1981). For the investigation
here, itis convenient to have the reduced set of three equations in the alternative but algebraically
equivalent form

3(vi+72)e = %? (¥7)o+ (va+7ve)o > 05
3(v3+7a)o = %§ (Yot (va+75)e > 0, (3.24)

3(vs+76)o =3 X (Vo + (vi+73)o > O,
7

with of course

5 (0o = (1/m) O/ Aobmin = T s 1 = 2/306, (3.2

from (3.12) and (3.14). It is evident from (3.24) that the simple theory requires there to be at
least one non-zero slip rate from each pair (1, 2), (3,4), and (5, 6), which means that there must be
slip on each of the slip planes (111), (111), and (111) atz, = [111] for minimum work. (This of
course encompasses the axisymmetric deformation of (3.22).) Taylor hardening, however,
requires only that (3.18) be satisfied; hence only two of the three critical planes need experience
slip for minimum work (that is stiffest response).

Further manipulations of (3.24) lead to the following relations (Havner 1981, equations (3.28)):

T(vi+72)o—2(vs+5)0—8(va+7e)o = 0,
2(71+76)o+5(va+75)o—T(¥5+ 7)o = 0, (3.26)
5(y1+7s)o+2(vs+va)o—T(Vs+7v6)o = 0,

where the third equation, obviously dependent (being the difference between the first two), is
given merely for completeness. It is implicit in Havner (1981, equations (3.27)), although not
remarked there, that (3.26) are precisely the conditions (given here as (2.14), rotation case (ii))
for zero tensile axis rotation relative to a material co-rotational frame. That is,

(21/21)y =0, or (Di)g = (A/A)ty, (3.27)

according to the simple theory in sixfold symmetry. (Recall that the requirement for Taylor
hardening is, in contrast, i, = 0.)

Finally, as shown in Havner (1981, § 3.4), if the condition of axis stability relative to the lattice
is imposed on the simple theory, then the combination of (3.26) (2:/2¢ = 0) with (3.18) (i, = 0)
leads to the axisymmetric solution (3.22). That is, for tensile axis stability in the sixfold symmetry
position, the simple theory uniquely predicts axisymmetric deformation of the crystal (Havner 1981, p. 344).

3.3.3. P.A.N. rule

To my knowledge the P.A.N. rule has not previously been investigated for the case of tensile
loading of f.c.c. crystals in sixfold symmetry. Consequently, the first-order analysis for this theory
is presented in somewhat more detail than was given for the other three hardening rules.

From (3.7), (2.42), (2.43), (3.12) and the symmetry of the my;, the first-order inequalities (2.44)
become for the P.A.N. rule

(ho/m) (X" [A)g > (’\S)OZ{%(nkj+njk) Yidotm(A—=A's)y, k=1,...,m, (3.28)

32 Vol. g11. A
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where again the generic modulus %, has been used consistent with (3.14), which applies to all four
theories. (As it stands, (8.28) governs solutions for the P.A.N. rule in each of four, six or eightfold
symmetry.) From (A 2), the full equations in sixfold symmetry are (with m = 2/3./6):

(ho/m) (X'/A)g = 15(A5)0 (2, 1, 5, 3, 3, 2) yo +m(A = A's),,
(ho/m) (X'/A)o = T5(As5)o (1,2,3,2,5,8) 7 +m(A—A's),,
(ho/m) (X' [A)g = T5(As5)0 (5,3, 2, 1,2, 3) yg + m(A—A's),,
(ho/m) (X' [A)g = 15(A8)0 (3,2, 1,2, 3, 5) yg+m(A—A's),, (3.29)
(ho/m) (X'[A)o = 75(As5)o (3,5, 2,3, 2, 1) 75 +m(A—Xs),,
(ho/m) (X'[2) 2 75(15)0 (2,3, 3,5, 1, 2) yg +m(A—A's),,

where 7, is the vector of slip rates in sequence 1-6.

The matrix on the right side of (3.29) is the symmetric part of the corresponding matrix for
Taylor hardening, which is simply (7,;). (Compare (3.29) with (3.13) of Havner 1981.) Remark-
ably, although (n;;) is not even of rank 3, its symmetric part is of rank 5. Let B denote the 5 x 5
matrix consisting of the first five rows (including the factor 7%) of the full matrix, less the last
column. Then

(Ao (Y15 73 V3> Y45 ¥5)6 = {(ko/m +m(As)o) (A’ /A)g—mAo} B~Y(1, 1, 1,1, 1)
—5(A5)o B1(2,3,3,5,1)T (v4)g,  (3.30)
with
1 -4 4 5 -3
-4 4 2 -8
4 2 4 —10 0. (3.31)
5 —8 —10 13
-3 6 0 3 -3

.

There follows (v1)g = (¥4)o = (v5)oand (73)o = (v3)o = (¥6)o (with Z(v;), given by (3.25)), which
is identically the axisymmetric solution of the two-parameter rule. Thus, the P.A.N. theory also
corresponds to (2.16) (rotation case (iv)), namely

iy = (21/D1), = 0. (3.32)

Consider the effect of this solution on latent hardening. As (3.32) corresponds to (£:), = 0,

there follows
(692)y = — (As) 2y ® (L), = 0. (3.33)

(Equivalently, the axisymmetric solution (3.22) yields X(a;7y;), = 0 as shown in Havner 1981.)
Consequently, from (3.3) the simple theory immediately reduces to (Havner 1981, p. 345)

(Th)o = ﬁojE (e k=1,..,N, (3.34)

or isotropic hardening; and the P.A.N. rule becomes, from (3.4),

(Tk)o = ho ? (7)o —tr (2,6D). (3.35)

Furthermore, as previously remarked, (3.32) is the axisymmetric solution (3.22) in sixfold sym-
metry. Therefore tensor D is a diagonal matrix when resolved on axis 7, = [111] (of maximum
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principal strain rate) and any two orthogonal axes, as also is the matrix of stress ¢ for axial loading.
Thus, 6D is a symmetric tensor, and its trace with any skew-symmetric tensor £, is zero. The last
term in (3.35) is therefore zero and we have

(Tk)o = hoz (7;')0, J=1,..,nk=1,..,N, (3.36)
]

for the P.A.N. rule as well (with N = 24, the total number of slip systems). We thus have
established that the P.A.N. rule (as well as the simple theory) predicts equal hardening of all systems,
both active and latent, in axisymmetric deformation of f.c.c. crystals in sixfold symmetryt.

3.3.4. Summary of first-order solutions and kinematic possibilities

Recall from § 2.1 the four possible cases of (partly) coincident rotation among lattice, material,
and axis-co-rotational frames, defined in terms of loading-axis rotation: (i) i = —wt = 0;
(i) D1/Dt =— Wi =0; (i) i = D1/Dt, whence Qi =0; (iv) i = Z1/Dt =0, whence wr =
Wi = 1= 0. Also recall, in conjunction with case (ii), the added criterion @N, /Dt = (N,)’,
requiring N, W = WN,, from which W = 0. This condition is not a further restriction on case (ii),
however. Whenever the loading axis is material-co-rotational (Wi = 0) one may arbitrarily
choose the transverse axes of the ‘loading frame’ to be material-co-rotational as well. Thus,
W = 0 and Wi = 0 are equivalent specifications of case (ii) for axial loading, and N, /Dt = (N,,)".

A parallel argument may be applied to case (i). If the loading axis is lattice-co-rotational
(vt = 0), we may choose the remaining axes of the loading frame so that they too are rotating
with the lattice. Thus, = 0 and wt = 0 are equivalent specifications of case (i). Then, however,
we should not have N, /Dt = (N,)".

For case (iv) the combined analogy does not hold. If, for example, we arbitrarily choose the
loading frame to be material-co-rotational (from Wi = 0), so that I N, /Dt = (N,)’, we cannot
simultaneously require (from wt = 0) that the frame be lattice-co-rotational as well. The con-
dition £: = 0 permits the material to have a pure spin about the loading axis relative to the
underlying lattice. Specifically, in sixfold symmetry, the axisymmetric solution (3.22) corre-
sponding to case (iv) may be written (Havner 1981, equations (3.33))

7’=%(1,1,1,1,1,1)2_7;""(_1:1:1’_1:—'1,1)7;

! e el (3.37)
—EXViS Vs S 2075
7 J

in which the y;-term corresponds to the relative spin £ (of magnitude 4/2y;) about 1, = [111].
Conversely, if we arbitrarily choose the loading frame to be lattice-co-rotational, whence w = 0,
there follows (N,)" = 0 while 2N, /2t = N, Q2 — 2N, # 0 (unless y; = 0).

Consider now the results from minimum work in sixfold symmetry for the four hardening
theories, grouped according to kinematics.

(a) Taylorhardening: i, = 0, case (i), from which = 0, whence (N;,)" = 0, but (21/9t),need
not be zero; correspondingly, we may have W # 0 and 2N, /Dt # 0.

(b) Simple theory: (21/9t), = 0, case (ii), from which W = 0, whence (V)" = DN,/ Dt, but
i, need not be zero; correspondingly, we may have w # 0 and (N,)" # 0.

1 I had not previously recognized the possibility of this result. Equation (3.36) and the italicized statement
therefore correct an erroneous statement in Havner & Salpekar (1983, § 2) that the P.A.N. rule is ‘incapable of
predicting isotropic hardening in six or eightfold multiple slip’.

32-2
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(¢) Two-parameter rule and P.A.N. rule: i, = (21/2t), = 0, case (iv), from which either (by
choice) w = 0, whence (N,)" = 0, but I need not be zero (correspondingly ZN, /2t # 0), or
W = 0, whence (V)" = 2N, /21, but v need not be zero (correspondingly (N,)" # 0).

Note in particular that for minimum work Taylor hardening does not require the loading axis to
be material co-rotational whereas the other three theories do. Thus, to assume in advance of a
theoretical analysis that W = 0 (hence (N,) = 2N, /2t), as do Franciosi & Zaoui (19824,
p. 1631, sentence following equation (6)), is incorrect, for this condition is a theory-specific
result.

It is instructive to pursue the issue of relative rotations in the case of double-slip from a sixfold
symmetry position (a response ‘less-stiff > than minimum work for each of the hardening rules
considered here). In a recent experimental study of axially-loaded copper crystals, Franciosi &
Zaoui (19825) concluded that the (tensile) specimen tested in a [111] orientation initially
deformed on systems a2, d1 (figure 1), or 1 and 5 as numbered here, up to an axial strain
(apparently logarithmic) of 5 %, (It should be noted, however, that their conclusion was based
not only upon traces of slip lines on the faces of their triangular specimen and X-ray diffraction
measurements, but also on their own conjectures about crystal hardening.) As mentioned in
Havner (1981, p. 342), inequalities (3.23) of the simple theory permit equai double slip on
systems a2, d1, with resultant axis rotation toward [112]. The two-parameter rule also permits
equal double slip on these two systems (see Havner 19825, equations (6.1)). However, neither
Taylor hardening (as noted in Havner 1981, p. 339) nor the inequalities (3.29) of the P.A.N. rule
permit double slip on a2, d1.

Consider the relative spin I of material and loading frame from the [111] axis position. From
(2.14), case (ii), the necessary conditions for Wi = 0 in sixfold symmetry may be written (with the
third equation dependent)

(7,7, -2, -5, =2, —=5)y' =0,
(2,5, -1, —17,5,2)y =0, (3.38)
(5,2,5,2, -7, ~7)y' =0,

which are identically equations (3.26) introduced as the minimum-work solution for the simple
theory. It is obvious that there is 70 combination of slip rates y;, > 0 on only two systems that can
satisfy these equations. Consequently, in an initial sixfold symmetry position W = 0is kinematically
impossible in double slip, independent of which systems are active. Hardening theories are not at issue.

From (2.13), case (i), the necessary conditions for wz = 0 in sixfold symmetry are (Havner
1981, equations (3.21))

(v1+76)o = (V2 + 7)o = (v3+75)o- (3.39)

Clearly, no double-slip combination can satisfy these conditions. For case (iii), £¢ = 0, the
necessary conditions in sixfold symmetry are, from (2.15),

(—38,-38,2,1,2,1)y" = 0,
(-2, —1,3,3, —1, —2)y' =0, (3.40)

(-1,-2,-1,-2,3,3)y =0,
with the third equation dependent. Again, no combination of only two active systems can satisfy
these equations. Thus, for double slip (whatever the systems) from an initial axis position of

sixfold symmetry, kinematics alone precludes each of cases (i) through (iv), and all three frames—
material, lattice, and axis-co-rotational — rotate relative to each other.
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4. SECOND-ORDER ANALYSES OF SPECIFIC HARDENING RULES
4.1. General equations

Henceforth, we shall assume that the systems which remain critical during a small load incre-
ment in a multiple-slip configuration have been identified, by minimum work rate or otherwise.
(Recall the discussion that followed (2.28).) Let n now represent the total number of these active
or inactive-critical systems, so that equations (2.25), which encompass (2.24), are satisfied for all
k = 1,...,n. Then the second-order inequalities (2.28) may be more conveniently expressed, from
(2.29) and (2.31),

(Th)o = 2’\)% (Mes Vi)o+ (/\S)o;a (n;77) 0+ (A5)g Zj: (k5770
—(m)o (A"5)g—2(my)o (A'/A)g (A=A's)y, k=1,...,n, (4.1)

which are completely general. Further, from (2.18), (2.42) and (2.43) the left side of (4.1) has
the equivalent representations, for all hardening rules,

T = Z]: (ij ')’;‘I +HI:7.7")/;')3 (4.2)
and
Ty = ;(hk}")’;’ +hijv;) — (As) % (173 + 75 V5)- (4.3)

Consider once again a virgin f.c.c. crystal in a four, six or eightfold symmetry position at
s = 5, Adopting the postulate of minimum work, we seek to minimize both Ag and Ag (3.17).
For each of the four hardening rules investigated here, it was established in §3.2 that Ag is
minimized when the first-order equalities are satisfied in all critical systems (recall (3.14) and
the discussion following (3.17)). Thus, every critical system is either active or inactive-critical
and n is 4, 6 or 8 in the respective axis position. Consequently, for these hardening theories (and
perhaps for others as well ) one can utilize (2.32), (2.33), (2.35), (2.40) and (2.41) in summing the
second-order inequalities (4.1) over the =z critical systems, consistent with minimum work
(stiffest response). We also shall use the following kinematic result, obtained by differentiating
(2.80) and substituting (3.12):

m ? (¥1)o = (X' [A)g = X (m}¥})es (4.4)
with ’
(mi)o = ‘j’" (mys 7’;:')0 —2m(A’/A),. (4.5)

Upon summing inequalities (4.1) over the four, six or eight critical systems and substituting
(4.2), (4.4), (2.32), (2.33) and (2.35), we obtain the following second-order counterpart of (2.36):
DY (Hy; i+ Hygvj)o 2 nm(2A + A"5) g + (A5), 2 % (mi Yi)o
J
—2nm(As)g X (m;vi)e, n=4,6,8. (4.6)
j

Equivalently, from (4.3) with (2.40) and (2.41), in terms of the effective hardening moduli 4,;
we have

23 (a5 + b ¥i)o > mm(2A+ 25)o + (As)o X 2 (miy i)
—2nm(As)g X (mjyj)e, n=4,6,8. (4.7)
j
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In each of the above the summations are taken over all z critical systems. Also, note that the left
side of (4.6), but not (4.7), is equal to 3,(7%),- (Although (2.40) holds, it does 1.0t follow that
2i(ris)o = 0, whence Xy (nz;)e # Xi(my;)o in general.)

In what follows we shall be particularly concerned with the calculation of the right side terms
Y (mjy;)e and either X ¥ (nz;7}), (from (4.6)) or 3 3 (my;¥)e (from (4.7)). Consider the first of
these. From (2.3) and the first equation in (2.10),

2 (m; 7)o = 2(iDr)o. (4.8)F
Thus, upon substituting (2.7) through (2.9) and making use of 77 = 0, we obtain
2 (m5¥i)o = = 2(IWi)o. (4.9)

By following a similar procedure, also using (2.30), (2.35) and (2.43), one may express the double
summations above as
% 3 (3770 = 214 %} N (18) g+ 21, % Ny, I'=D+2, (4.10)
J

35 (miy 7)o = 210 3 D)y =24y 3 N (Wi (.11)

Finally, it is re-emphasized that (4.6) and (4.7) are restricted only by the requirement that no
critical system become inactivated (in the sense of (2.26)) in a four, six or eightfold symmetry
position. For the four hardening rules considered here and the sixfold position, this can occur
only in double slip (or single slip for two of the theories). The kinematics and theoretical results
for finite changes are already available for double slip (save for the P.A.N. rule), and a series
expansion, as here, is not needed (see Havner & Salpekar 1982, 1983).

4.2. Solutions in n-fold symmetry with axis stability

The specific case of initial axis stability (i.e. §{, = 0) is a possible solution of the first-order
equalities in each of four, six and eightfold symmetry. This is evident from § 3 here for all four
hardening rules in sixfold symmetry, and has been shown to hold for Taylor hardening and the
simple theory in four and eightfold symmetry by Salpekar (1982). The result also can be extended
to the other hardening rules in the latter symmetry positions. Thus, we briefly consider the
consequences of axis stability in n-fold symmetry (n = 4, 6, 8).

Obviously, each of (4.9), (4.10), and (4.11) reduces to zero for i, = 0. Then, from (3.1), (3.2),
(3.5) and (8.7) in turn, together with ¥,(r;;)o = 0 from (2.43), (4.10), (4.11) and i, = 0,
inequalities (4.6) and (4.7) simplify to

nhy 3 (7)o +1hy 2 (7)o = nm(21" 4+ As),. (4.12)
J 2

Here h, is the generic label, as before, for the various moduli H, H = 2H, /n+ (n—2) Hy/n, k and #
at s = s5,; and kg is the generic label for their rates of change with respect to nominal stress. Thus,
on substituting (3.12), (4.4), and (4.9) into (4.12), we obtain the following lower bound to Ag in
the event of axis stability in any of the three higher symmetry positions, applicable to all four

hardening theories:
Ao = [ho(A'[A)g — ko +2m*Ao] Ag/ (o — m*(2s)o), (4.13)
with
Ay = (mAg)?/(hg—m3(As)g) > 0. (4.14)

t Here and in subsequent equations (as appropriate) the time parameter ¢ implicit in 7, D, and W is to be
replaced by the variable s.
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Alternatively, and in parallel with (3.15), if both Ag = (d2A/ds?), and A; = (dA/ds), are
available from experimental test, (4.13) gives a lower bound to the rate of change 4 of the generic
modulus:

hy = 2m2A g+ hy(A' JA) g — (mAJA")3Ag, (4.15)
with
hy = m2(As)o+ (mAg)2/Aq. (4.16)

If the axis remains in the n-fold position (that is, # = 0 throughout the loading increment) then
(4.15) becomes an equality and yields the precise value of %; that corresponds to the experi-
mentally determined behaviour. (This is not specific in the case of the two parameter rule,
however, as (4.15) then only provides an n-fold mean for the rates of change of the individual
parameters H;, H, from (3.9).)

4.3. The minimum-work solution in sixfold symmetry

Recall from § 3.3.4 that, in sixfold symmetry, minimum work identically gives #, = 0 from the
first-order inequalities for each of Taylor hardening, the two-parameter rule, and the P.A.N. rule.
Consequently, (4.14) and the lower bound in (4.13) (with m? = .2;) form precisely the minimum
work solution for Ag and Ag, in terms of the generic hardening modulus /£, and its rate of change
hy = (dh/ds),, for these three hardening rules. (Note that £; may be positive, negative, or zero.)
For the simple theory, however, i, need not be zero for minimum work, as noted in § 3.3.4; hence
the analysisin § 4.2 that led to (4.13) does not apply to this hardening rule. None the less, we shall
establish in the following that the lower bound (4.13) is a consequence of minimum work for the
simple theory as well.

Let us first consider the basic second-order inequalities themselves (rather than merely their
sum) for each of the simple theory and Taylor hardening in sixfold symmetry. For the latter (as
well as for the two-parameter and P.A.N. hardening rules) we necessarily have, from (2.2), (2.3),
(2.7), (2.9), (2.10), (2.30) and 7, = 0,

(mi)o = 0, (mg;)o =0, and ;(nkﬂ})o = 2m(X’/A)q- (4.17)

Thus, on substituting (3.1), (3.12), (4.2) and (4.4) with (4.17) into (4.1), we find (for Taylor
hardening only)

[Hy +m*(As)o] (A"/A)g 2 m(As)o X (745 75)0
+ [HO(A']//\)O —Hi+2m2(A+A's)g] (A'/A)g, k=1,...,6. (4.18)
Summation of these inequalities with the aid of (2.32) and (4.4), which simplifies to
mE (o = (/N (4.19)

provides the lower bound (4.13) for Ag (with Hj of course replaced by the generic modulus ).
Moreover, in parallel with the results (3.18) from the first-order inequalities for Taylor hardening,
minimum work gives (from (4.18), (4.19) and (4.13))

(V1+76)0 = (va+7a)o = (Y3 +75)0 = [M(2A+ A's)g = Hy/m] (X'/A)o/ (3Hy — §(As),).  (4.20)

(The individual second derivatives of the crystallographic slips, as their first derivatives, are not
further determined by analysis.)
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As i, may be non-zero in the simple theory none of equations (4.17) apply. None the less,
although the (m;), are not necessarily zero, we still have

;-‘v (m;'}’;)o = 0’ (4-21)

from (4.9) and (21/2t), = — (Wi), = 0, corresponding to minimum work in sixfold symmetry.
Hence (4.19) still holds (from (4.4) and (4.21)). On substituting (3.5) and (4.3) with (2.43),
(8.12) and (4.19) into (4.1), one obtains

(7o +m*(As)o] (A" /)¢ = m(As), § (masv5)o+ 2mAg(my)o +m(As), ? (mi;v3)o
+[Ao(A /) g — by +2m2(A+A%5)g] (A'/A)g, k=1,...,6, (4.22)
for the simple theory, with |
2 (mis¥3)o = 200 Ni( D)o+ (X[ A)g (mi)os (4.23)

from (2.43), the second equation of (3.27) and (2.29).
Consider now the summation of inequalities (4.22), with (4.19), (4.23) and (2.35). The result
(after simplification) is
1k —m*(As)ol (A"/A)o > nlho(X'/A)o—ho + 2] (X'/A)g + 2m(As)oto T Ni(Di)o,  (4.24)
with, of course, n = 6, m? = %, and the equality necessarily satisfied for minimum Ag, hence
minimum work. On comparing (4.24) with (4.13), we see that to establish applicability of the
earlier lower bound to the simple theory in sixfold symmetry, there remains to prove that
1, X N,.(Di)y = 0 for all solutions (3.24) of the first-order equalities. (As I found this result to be

neither obvious nor straightforward to prove, a reasonable amount of detail is included here.)
We shall find it convenient to use the equivalence

2, %‘4 N,(Di), = %‘a ? (M5 73)o (4.25)
from (4.23) and (2.85) (or (4.11) and (Wi), = 0) and first evaluate
% (mzs)o = 210 %Mm iy, My = N,N;+N,N;, (4.26)

which follows from (2.43). The second-rank symmetric tensors M, in sixfold symmetry are given
in the Appendix. Summing on £ in (A7), withj = 1 to 6 and 1, = (1//3) (- 1,1, 1), we find

i\O%I‘Jkl = 1/(6*/3) (_33 6: 7)’ 'O%Mkz = 1/(6\/3) (_3’ 7: 6):
;O%Mks = 1/(64/3) (_63 3: 7)’ IO%‘IMIA = 1/(6\/3) (_7: 3: 6)9 (4.27)
?O%Mks = 1/(6\/3) ('_6, 7, 3): 'O%Mks = 1/(6\/3) ("7, 6’ 3)'

General kinematic equations for # in sixfold symmetry are given in Havner (1981, equations
(8.20)). They are
342(6)o = — (vi+7va+7a+7e)o +'§‘§: (7)o

3V2(lo = (2 + 73+ 74+ 7)o = § 2 (Vo (4.28)

8V2(L)o = (i +7vs+vs+7ve)o—% § (7)o
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Substituting solution (3.24) of the first-order equalities of the simple theory into (4.28), one

obtains .
3J2(t)o = —5(va+ 7)o+ %5;: (7)o

342()o = §(72 + 7)o—§ X (V)o (4.29)
342(%)o = 5(¥1+73)o—% ]2 (7i)o-
We now substitute (4.27) and (4.29) into (4.26). There follows, after simplification,
3 (mia)o = m*[=T(va+7e)o+2(va + ¥8)o +6(v1+73)al;
3 (mig)o = m*[=T(Ya+7e)o+8(v2 +75)o +2(r1 + ¥3)ol,
3 (mig)o = m*[2(va+Ye)o = 7Y + Ys)o + 5(¥1 + 73l
5 (o = w50+ Wlo= 1004+ Wo 2074 + )l a0

§ (mig)o = m3[2(va+ ve)o+5(va+ 75)o— T(¥1+ ¥3)o)s

% (mia)o = mB(Yet Yoo+ 2073+ 7)o~ T(Vi+ 7)ol )

Itis readily confirmed that equations (4.30) are zero only for the axisymmetric solution with axis
stability, given by (3.37)1. Correspondingly, a key step in the proof is substitution from (4.29)
for each of (yz+7e)es (¥2+7s)o and (y1+7s)e above. The terms in ¥ (y]), cancel in every
equation, and (4.30) may be expressed in the final simple form

% (mpy)o = 1/(94/3) (T8, + 205+ 5i3)g,
% (Mia)o = 1 /(94/3) (T8, + 5l + 28y),,

%: (mig)o = 1/(94/8) (— 28, — Tiy+ 5ly),,
= (mia)o = 1 /(94/3) (— 56y — Tty + 283),
%: (mis)o = 1/(943) (— 28, + 5ty — Tly),,

% (mig)o = 1/(94/3) (— 58, + 22, — 73‘3)0-}

(4.31)

We now substitute (4.31) into (4.25), summing on j from 1 to 6 to obtain
2% (miy i) = 1/ (94/3) [{7(v1+72)o— 2(vs + 78)o— (72 +78)o} (1)o
+{2071 4 78)0+5(v2 +78)o— T(va + va)o} ()0
+{6(v1+73)o+2(72+ V2o — T(¥5+ Ye)o} (ia)ol- (4.32)

But from (8.26) of the simple theory, we see that each of the algebraic multipliers of the com-
ponents of §, is a zero identity ! Thus, we have proven that

2 5 (Do = 3 X (miy77)o = 0 (433)

+ The simple theory requires that £, be a direction of principal strain rate for minimum work, from (3.27),
but the theory does not require axis stability. The converse is true for Taylor hardening.
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for the simple theory in sixfold symmetry, corresponding to minimum work. (As the reader
undoubtedly will have realized, we could have obtained expressions for the 3, (m;;), which are
equally as simple as equations (4.31) by substituting (4.27) directly into (4.26) without using
(4.29). The result would have been X, (m;,)o = 1/(34/3) (—3{; + 663+ i), etc. However, we
should not then have found in (4.32) the readily recognizable identities (3.26). It is the double
substitution of (4.29) from the simple theory that is the key to the proof.) '

We now summarize the principal results in sixfold symmetry. None of the four hardening
theories considered predicts an absolutely unique set of values, from minimum work (‘stiffest
response’), for the first or second derivatives of crystallographic slipst. Nevertheless, the mini-
mum work postulate gives the following general connections between derivatives of the observable
axis-stretch A and the theoretical (generic) hardening modulus %, and its rate of change Ay,
applicable to all four theories:

Ag = (mAg)2/[ho—m?(As)e), ko > m?(As),, } (4.34)

A = [ho(A'/A)o = hg + 2m*Ag] A5/ [hg — m?(As)o].

(Recall that (A’/A), is necessarily a principal strain rate for minimum work according to all the
theories save Taylor hardening.) Furthermore, for each of Taylor hardening, the simple theory,
and the P.A.N. rule, (4.34) is sufficient for determination of the respective k, and kg from experi-
mental values of A, and Aj, corresponding to triple or higher-order multiple slip in sixfold

symmetry: ‘
hy = m*(As)o + (mAo)2/Ag, A9 > O, 1
kY = 3m2Ag+m2(A's)g— (MA /AR AS. |
In addition to the foregoing results for sixfold symmetry, it was established in §3.2 that the

first of (4.34) (or (4.35)) applies to the four and eightfold symmetry positions as well. Whether the
second of (4.34) (or (4.35)) also holds in these other positions remains to be determined.

(4.35)
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APPENDIX
Matrices (ny;) for fic.c. crystals in four, six and eightfold symmetry

In fourfold symmetry, with ¢, = [011] and the four critical systems (figure 1) taken in sequence
a2, a3, c2, c3, the matrix of coefficients.ny; = 21, Ny (b ® n),1, is

2 110
111 2 0 1
n,:) == . : Al
(kf). 3|1 0 2 1 ' ( )
0 1 1 2

In sixfold symmetry, with g, = [111] and the six critical systems (figure 1) taken in sequence
a2, a3, b1, b3, di, d2, matrix (n,) is

2 1516 2
1 26 256 1
116 1 21 25

) =13 oo A2

™) =T5l5 5 1 2 1 5 | : (42)
1625 21
2 5 1 5 1 2
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In eightfold symmetry, with 7, = [001] and the eight critical systems (figure 1) taken in sequence
a2, c2, bi, c1, d2, b2, a1, d1, matrix (n) is

(2 2 3 1 2 2 1 3]
2 2 31 2 2 1 3
312 2 3 1 2 2
13 1 2 2 3 1 2 2
(ms) = 5 : (A3)
" 2 2 13 2 2 3 1
T~
:é 1 2 21 3 2 2 3 1
1 2 2 1
= S 3 3 2 2
O 1 3 2 2 1 3 2 2
23]
= 5 Observe that (n;;) is symmetric only in fourfold symmetry.
R
LT O
=w
2'(2 Matrices (ry;) for f.c.c. crystals in four, six and eightfold symmetry
%9 In fourfold symmetry, in the same sequence as (A 1), the matrix of coefficients r,; = — 21, N, £2;1,
s is
850 -5 -1 1 5
&Z: 1]l-1 =5 5 1 (A1)

5 1 -1 -5

In sixfold symmetry, in the same sequence as (A 2), matrix (7;) is

10 11 -5 —1 —9 —6]
11 10 -9 -6 -5 -1
tl-5 =1 10 11 -6 -9
T:) = — . A5
() = 3 —9 -6 11 10 -1 -5 (45)
-1 -5 -6 -9 10 11
P -6 -9 —1 -5 11 10

In eightfold symmetry, in the same sequence as (A 3), matrix (r,) is

=
;5>< 1 1 -2 2 -1 -1 2 -2]
O: 1 1 -2 2 -1 -1 2 -2
55 -2 2 1 1 -2 2 -1 -1
T O tl-2 ¢ 1 1 -2 2 -1 -1
7. = — . A6
~wv () = 13 -1 -1 2 -2 1 1 -2 2 (46)

-1 -1 2 -2 1 1 -2 2
2 -2 -1 -1 2 -2 1 1
2 -2 -1 -1 2 -2 1 1

b -

Matrix (7,;), as (m;), is symmetric only in fourfold symmetry. However, (m;;) = (n;) + (r3;) is
symmetric in all three higher symmetry positions.
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Second-rank tensors My, for f.c.c. crystals in sixfold symmetry

The second-rank tensors M;; = N; N; + N; N, in sixfold symmetry, expressed as matrix arrays
of their components on the f.c.c. lattice axes, are (in the same sequence as before):

52 -1 N ~1])
M11='1_2 2 2 2] All2=11121=-22 -1 2 51
| -1 2 5 -1 5 2]
. [ 2 3 —1] . -8 —1 -—1]
st=fwa1=ﬂ 3 2 1y, Mu=)w41='2z -1 2 1y
-1 1 8] -1 1 2]
. 2 -1 -1 . [—6 0 -2
Ms-ﬂlu:ﬁ -1 2 1}, MIB_AIGI"'2_4 04 0},
-1 1 -8 -2 0 -6
. 5 —1 2] . [ 2 -1 -1
M22=1_2 -1 5 2 ) %3=M32=2_4 -1 -8 1 s
| 2 2 2] -1 1 2
. [_6 -2 0 . [ 2 —1 3]
Mz4=M42-2_4 -2 -6 0}, Mzs-juss':ﬂ -1 8 1},
| 00 4] 3 1 2
. -8 —1 —1] . 2 2 -2
Myg = My = 57| -1 1!, My=3| 2 5 1f, ) (A7)
-1 1 2 -2 1 5
. 2 -1 -5 . (4 0 0]
%4=M4s='2—4 -1 8 1}, fwss—Mss—ﬂ 0 -6 21,
-5 1 2] 0 2 -6
2 -t —1] ' 1’5 -1 -2]
%6=Mes='2—4 -1 2 1}, Mu=13 -1 5 -2,
-1 1 -8 -2 -2 2
. [ 2 -1 —1] . [ 8 —1 —1]
M5=M54='ﬂ -1 -8 1}, M4,=Al“=-2—4 -1 2 -3
-1 1 2] -1 -3 2]
. 2 -2 2 . 2 -5 —1]
M55=1_2 -2 ’ M56=M65='2_4 -6 2 1y,
2 1§ -1 1 8]
. 5 -2 -1
My=75|-2 2 -2f.
-1 -2 5 )
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